Voltage-dependent action of valproate on potassium channels in frog node of Ranvier.
نویسندگان
چکیده
The influence of the anti-epileptic drug, valproate, on K conductance (gK) was investigated in voltage-clamped Ranvier nodes of Xenopus laevis. A double pulse method was used in order to eliminate the effect of accumulation of potassium ions in the perinodal space, thus enabling the determination of the 'true' magnitude of gK. Valproate (2.4 mM) had a voltage-dependent action on the magnitude of gK. With small step depolarizations more negative than about -50 mV, valproate increased gK (20 ms after the step) to approximately 12% of the maximal gK, an increase which disappeared due to a relatively rapid (less than 200 ms) inactivation process. However, with step depolarizations more positive than about -50 mV, valproate markedly reduced gK (20 ms after the step) at greater depolarizations, with a maximum of about 40% of the maximal gK. Moreover, at these voltages gK was inactivated completely (less than or equal to 10 s), whereas under control conditions the inactivation was only partial. Both the temporary increase and the steady state decrease of gK could contribute to an anti-epileptic effect by increasing the action potential threshold and by preventing excessive depolarizations of the nerve during epileptic seizures, respectively.
منابع مشابه
Effects of KC 3791 on sodium and potassium channels in frog node of Ranvier.
Effects of a new antiarrhytmic compound KC 3791 on sodium (INa) and potassium (IK) currents were studied in frog myelinated nerve fibres under voltage clamp conditions. When applied externally to the node of Ranvier, KC 3791 (KC) at concentrations of 10(-5)-10(-4) mol.l-1 produced both tonic and cumulative (use-dependent) inhibition of INa. An analysis of the frequency-, voltage- and time depen...
متن کاملEffects of strychnine on the sodium conductance of the frog node of Ranvier
Strychnine blocks sodium conductance in the frog node of Ranvier. This block was studied by reducing and slowing sodium inactivation with scorpion venom. The block is voltage and time dependent. The more positive the axoplasm the greater the block and the faster the approach to equilibrium. Some evidence is presented suggesting that only open channels can be blocked. The block is reduced by rai...
متن کاملCalcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation.
Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in ma...
متن کاملEffect of Sodium Valproate on Ouabain-Induced Arrhythmia in Isolated Guinea-Pig Atria
Sodium valproate (SV), an antiepileptic drug has several mechanism of action. It inhibits voltage sensitive Na+ channels and reduces intracellular Na accumulation. These actions are similar to that of both phenytoin and carbamazepine. We have investigated the direct cardiac action of SV and its effects on ouabain-induced arrhythmia in isolated guinea-pig atria. The guinea-pig atrium was dissect...
متن کاملIon Channel Clustering at the Axon Initial Segment and Node of Ranvier Evolved Sequentially in Early Chordates
In many mammalian neurons, dense clusters of ion channels at the axonal initial segment and nodes of Ranvier underlie action potential generation and rapid conduction. Axonal clustering of mammalian voltage-gated sodium and KCNQ (Kv7) potassium channels is based on linkage to the actin-spectrin cytoskeleton, which is mediated by the adaptor protein ankyrin-G. We identified key steps in the evol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European journal of pharmacology
دوره 184 1 شماره
صفحات -
تاریخ انتشار 1990